

Vol. 30 (1) January-June, 2025

आईजीएफआरआई चारा-पत्र

CFRI Newsletter

Glimpse of Activities

ISSN 0973-7960

Since its inception in 1962, ICAR-Indian Grassland and Fodder Research Institute (IGFRI) has led the way in developing and promoting cutting-edge fodder technologies. From high-yielding, climate-resilient forage varieties to advanced cultivation and conservation practices, IGFRI has revolutionized fodder production and utilization across India.

Embracing the Public-Private Partnership (PPP) model, IGFRI has accelerated the scaling of its innovations through strategic collaborations with private firms and entrepreneurs. This approach has successfully translated research into real-world solutions under the PPP framework, notably through the commercial seed production of IGFRI-developed forage varieties such as berseem, oat, BN hybrid, guinea grass, and cowpea. The transfer of these technologies to seed companies ensures the timely and widespread availability of high-quality forage seeds to farmers across diverse agro-climatic regions. The IGFRI Agri-Business Incubation Centre (ABIC) further fuels this momentum by supporting start-ups with

mentorship, infrastructure, training, and business linkages, turning fodder-focused innovations into viable enterprises. Alongside, IGFRI's growing portfolio of patents reflects its leadership in fodder science and innovation. In addition to commercialization efforts, IGFRI has made significant progress in intellectual property (IP) generation. Several innovations developed by the institute have been filed or granted patents, reinforcing its role as a national hub for fodder technology innovation and deployment.

In tune with India's green energy ambitions, IGFRI has expanded its research into bioenergy, partnering with industries to develop sustainable energy solutions from fodder and biomass, especially under stressed environmental conditions. To maximize impact, IGFRI uses diverse technology transfer models to bridge the gap between lab and land—ensuring its innovations are accessible, scalable, and transformative for rural livelihoods and the livestock sector.

IGFRI at International Platform

Reflections from the International Rangeland Congress 2025 in Adelaide, Australia

IGFRI scientists Drs. Nagaratna Biradar, Kamini and R.V. Kumar attended the 12th International Rangeland Congress (IRC) held in Adelaide, Australia, from June 2 to June 6, 2025. This landmark event brought together over 1,000 delegates from more than 70 countries, representing one of the largest global gatherings of rangeland researchers, practitioners, and policymakers. The Congress served as a vibrant platform for knowledge exchange and collaboration in the domain of rangeland science and management. Dr. Biradar, delivered an oral presentation on "Trend of Stylosanthes seed production in India", Dr. Kumar delivered an oral presentation on "Reviving the Rangelands: Silvopasture Approaches for Profitable Land Restoration", while Dr. Kamini presented an oral paper on "Mulberry for Mitigating Enteric Methane Emissions and Ensuring Sustainable Livestock Feeding Systems in India". Their work received wide appreciation from delegates across the globe.

(Nagaratna Biradar)

FORAGE TECHNOLOGY DEVELOPED AND COMMERCIALIZED

1. NEW VARIETIES NOTIFIED

A. Lucerne: IGFRI-DL-2 (IGFRI Dharwad Lucerne-2) (AWCL-2)

IGFRI-DL-2 (AWCL-2) has been notified for the states of Punjab and Rajasthan vide Gazette Notification S.O. 2128(E), dated 13th May 2025. It produces 85–90 t/ha/year of green fodder yield (GFY) and 10–15 t/ha/year of dry matter yield (DMY). The crude protein yield (CPY) is 2.5–3.0 t/ha, with a seed yield of 1.0–1.5 q/ha. It possesses a crude protein content of 16–18% and in-vitro dry matter digestibility (IVDMD) of 58–62%. The variety is resistant to rust and leaf miner, and moderately resistant to weevil and *Helicoverpaarmigera*.

(K. Sridhar, S. Karthigeyan, Sultan Singh, N.S. Kulkarni, Edna Antony, N.K. Shah and N.R. Bharadwaj)

B. Berseem (Trifolium alexandrinum L.): Bundel Berseem-9 (JHB-20-1)

Bundel Berseem-9 (JHB-20-1) is a multicut variety developed through induced mutation. In AICRP trials, JHB-20-1 recorded 613 q/ha green fodder yield, 100 q/ha dry matter yield, and 14.7 q/ha crude protein yield. The potential yield of the variety is 1038 q/ha for green fodder and 171 q/ha for dry matter. The variety has been notified vide Gazette Notification S.O. 2128(E), dated 13th May 2025, for release in the states of Madhya Pradesh, Maharashtra, Chhattisgarh, and Bundelkhand region of Uttar Pradesh.

(Tejveer Singh, A. Radhakrishna, Mahesha H.S., S.R. Kantwa, R.P. Saini, Sevanayak D. and Reetu)

2. PATENT FILED


S.No.	Name of invention	Application No.	Date of filing
1	A Novel phyto-chemical compound from the extract of Fodder Tree - Anogeissus pendula Edgew	202511011063	February 10, 2025
2	An apparatus for preparation of smoke water	202511020933	March 07, 2025

3. TECHNOLOGY COMMERCIALIZED

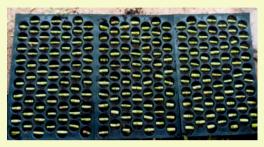
Berseem variety JHB 18-1 (Bundel Berseem-7) has been commercialized to Alamdar Seeds Pvt. Ltd., Kutch, Gujarat on 23/04/2025. This variety was notified in 2022 for North-West, Hill and Central zones of India.

4. REGISTRATION OF BUNDELKHANDI GOAT AS A BREED

The Bundelkhand region shows a strong human—goat relationship, with 178 goats per 1,000 people, much higher than the national average of 121. The indigenous Bundelkhandi goat, mainly black and medium-sized, is raised for meat. Of the region's 32.16 lakh goats, nearly 10 lakh belong to this breed. Recognizing its importance, ICAR-IGFRI, Jhansi secured official registration of the Bundelkhandi goat as a distinct breed on January 6, 2025 (Accession No. INDIAN_GOAT_2010_BUNDELKHANDI_06041). The registration of the Bundelkhandi goat as a breed marks a major milestone in strengthening research efforts, ultimately benefiting goat keepers by improving their livelihoods.

(B.P. Kushwaha, Deepak Upadhyay, S.K. Mahanta, K.K. Singh and Amaresh Chandra)

Vol. 30 (1) January-June, 2025 IGFRI Newsletter


RESEARCH HIGHLIGHTS

Rapid multiplication of Bajra Napier Hybrid

Rapid multiplication of baira napier hybrid: Bajra-Napier Hybrid (BNH) is a highvielding, high-quality fodder crop, but its inability to produce seed limits propagation to stem cuttings or rooted slips. Among these, stem cuttings especially those using the single bud technique are more efficient, though their success depends on the stem portion (top, middle, or bottom) and timing of planting. To identify variety-specific portions for rapid multiplication, an experiment was conducted using eight BNH varieties (BNH-10, Co-4, CoBN-5, DHN-15, DHN-6, IGFRI-3, Red Napier, and Super Napier). Results revealed significant variation among varieties and stem portions. For single-node cuttings, top portions showed the best establishment in DHN-15 (84.76%) and BNH-10 (85.34%), while middle and bottom portions performed better in Red Napier, CoBN-5, DHN-6, and Co-4. In IGFRI-3, middle (50.95%) and bottom (35.24%) portions were most suitable, whereas in Super Napier, top (86.67%) and middle (88.10%) portions showed high germination. For two-node cuttings, germination improved markedly, with top portions best for DHN-15 (96.67%) and BNH-10 (100%), middle portions for Red Napier (100%), and bottom portions for CoBN-5.

Sprouting of two node stem cuttings (between paper method)

Single bud multiplication in trays

DHN-6, and IGFRI-3 (100%). The study concludes that stem portion selection varies across hybrids, and adopting variety-specific portions can enhance rapid multiplication of Bajra–Napier hybrids.

(Vinod Kumar, V.K. Yadav and Seema S. Doddamani)

Assessment of biological nitrification inhibition (BNI) capacity of tropical forage grasses in semi-arid region

Regulating nitrification is a key strategy for enhancing nitrogen (N) recovery and improving agronomic N-use efficiency, particularly in systems where significant N losses occur following nitrification. Biological Nitrification Inhibition (BNI) is a natural process in which certain plants release root exudates that suppress the activity of nitrifying soil microbes, thereby reducing the conversion of ammonium (NH₄*) to nitrate (NO₃*). This mechanism can enhance nitrogen use efficiency and minimise N losses in agricultural systems. To evaluate the BNI efficiency of tropical forage grasses, a total of 182 accessions representing *Cenchrus ciliaris* (buffel grass), *Megathyrsus maximus* (Guinea grass), *Brachiaria* spp. (signal grass), BN hybrid, *Sehima nervosum* (sen grass) and other grass species were tested. Soil samples were collected from the rhizospheric zones (top 10-15 cm depth) of these grasses maintained in the field gene bank at ICAR-IGFRI, Jhansi. Ammonium and nitrate concentrations were quantified using standard methods, and the Degree of Ammonium Retention (DAR) was calculated as an indirect measure of BNI activity. Results revealed that a wide range of BNI capacities existed among the tested species (Table 1). *Sehima* exhibited the highest BNI activity (62.11%), followed by Guinea grass (59.5%). *Brachiaria* species, already recognised for their BNI potential, showed a retention rate of 57.24%. Based on this screening, genotypes with both high and low BNI capacities were identified for further validation under pot and field conditions.

Table 1. Comparative BNI capacity of selected tropical forage grasses

S.No.	Grass species	No. of accessions	Min BNI (%)	Max BNI (%)
1	Buffel grass (Cenchrus ciliaris)	123	9.42	40.33
2	Guinea grass (Panicum maximum)	14	14.04	59.50
3	Sen grass (Sehima nervosum)	13	55.02	62.11
4	Signal grass (Brachiaria spp.)	6	31.78	57.24
5	BN hybrid	14	32.00	38.92
6	Other grasses	12	29.42	37.26
	Total	182		

(R Srinivasan, Tejveer Singh, Manikanta Chikoti, Sugandha, Amit Kumar Singh and Vijay Kumar Yadav)

OUTREACH ACTIVITIES

Impact of legume diversification in temperate grasslands on ecosystem function indicators

The integration of legumes into temperate pasture grass systems demonstrated a substantial improvement in key indicators of ecosystem functioning. The treatments involving legume diversification — namely SGL1 (25% Festuca arundinacea + 25% Dactylis glomerata + 50% Onobrychis viciifolia), SGL2 (25% Festuca arundinacea + 25% Dactylis glomerata + 50% Trifolium pratense), and SGL3 (25% Festuca arundinacea + 25% Dactylis glomerata + 25% Onobrychis viciifolia + 25% Trifolium pratense) — outperformed the grass-only mixture (SG: 50% Festuca arundinacea + 50% Dactylis glomerata) across several ecological indicators. The Carbon Management Index (CMI), a critical indicator of soil organic matter dynamics and quality, was significantly higher under the legume-integrated treatments. Specifically, CMI was enhanced by approximately 9%, 27%, and 20% in SGL1, SGL2, and SGL3, respectively, over the SG treatment. This improvement reflects the superior capacity of legume-rich swards to stimulate carbon inputs through higher biomass return and enhanced microbial activity. Legumes, through their nitrogen-fixing ability and higher root turnover, contribute labile carbon to the soil, which accelerates microbial-mediated decomposition and carbon cycling.

The Biological Activity Index (BAI), which reflects microbial biomass and enzymatic activity in the soil, was improved 1.5 times under all legume treatments compared to the grass-only system. This substantial enhancement indicates that legumes foster a more active and diverse microbial community, which is essential for nutrient cycling, organic matter decomposition, and soil structure development. Similarly, the Ecorestoration Efficiency (ERE) — a composite indicator measuring the improvement in soil health and vegetation recovery relative to a degraded baseline — was increased by approximately 50%, 77%, and 62% under SGL1, SGL2, and SGL3, respectively, at the surface layer. This underscores the potential of legumes in accelerating ecological restoration processes in sub-temperate and temperate degraded pasturelands.

(Suheel Ahmad, Avijit Ghosh, S.S. Bhat, N.H. Mir, J.P. Singh, Regu Atufa and N. Biradar)

SCSP/TSP and other outreach activities

The Regional Research Station, Srinagar, organized seven awareness-cum-training programmes on "Recent Forage and Livestock Technologies for Enhancing Livestock Productivity" under SCSP, TSP, VKSA, and other outreach initiatives. A total of 900 beneficiaries participated in these programmes. Demonstrations of improved fodder technologies, particularly the use of quality fodder seed, resulted in a remarkable 30% increase in green fodder yield compared to traditional farmer practices. This enhanced availability of nutritious and high-quality fodder contributed to a 10% increase in milk production. Furthermore, the provision of balanced mineral mixtures, calcium supplements, and deworming medicines, along with access to quality fodder, led to visible improvements in animal health.

Glimpses of SCSP programmes in Jammu division

Awareness Programme conducted by RRS Srinagar in Budgam district, J & K A Training - cum-exposure visit was organized for NEH Farmers on "Fodder and livestock based interventions for livelihood improvement of NEH Farmers" under ICAR – IGFRI NEH Programme with Central Agricultural University, Imphal, Manipur as a Co-operating Centre from 26-27 February, 2025.

A total of 13 famers from NEH region had participated in the training programme and information regarding cultivation practices of forage crops and varieties specific to NEH region, quality seed production techniques of forage crops including their harvesting and post-harvesting techniques were provided by the experts from IGFRI.

Viksit Krishi Sankalp Abhiyan-2025 (Pre-Kharif Season)

The Indian Grassland and Fodder Research Institute (IGFRI), Jhansi actively participated in the Viksit Krishi Sankalp Abhiyan (VKSA), conducted over a period of 15-days from 29th Vol. 30 (1) January-June, 2025 IGFRI Newsletter

May to 12th June. A total of 48 scientists from IGFRI were involved, forming 135 teams which covered three districts of the Bundelkhand region—Jhansi, Lalitpur, and Jalaun. These teams visited 405 villages, engaging with approximately 47,718 farmers, including 41,037 men and 6,681 women. On an average, 27 village meetings were held daily, benefitting around 3,000 to 4,000 farmers per day. The campaign was conducted in collaboration with several institutions such as Rani Lakshmi Bai Central Agricultural University (RLBCAU), Krishi Vigyan Kendras (KVKs), ICAR-CAFRI, State Line Departments, banks, insurance companies, NGOs, Farmer Producer Organizations (FPOs), and others.

During the campaign, multiple key issues emerged from farmer interactions. These included frequent crop losses, particularly in pulses and oilseeds, due to erratic weather conditions; damage from stray and wild animals; the harmful practice of crop residue burning; and water scarcity for irrigation. Farmers also reported lack of access to quality seeds and fodder, along with inadequate veterinary and animal healthcare services. Additionally, challenges in the implementation of government schemes were identified, such as difficulties with KYC compliance, delays in crop insurance payouts, irregularities in seed and minikit distribution, and limited Minimum Support Price

(MSP) procurement, which often resulted in low returns due to the involvement of middlemen.

To address these challenges, scientists recommended several scientific interventions. These included promoting crop diversification and Integrated Farming Systems (IFS) to counter climate-related risks, introducing fodder crop-based rotations with seasonal, perennial, and non-conventional fodder crops, and encouraging the conservation of surplus fodder. Mechanization in the fodder and livestock sectors was also suggested, along with scientific livestock management practices like the use of improved breeds, balanced feeding, and proper animal healthcare. Farmers were advised to make use of Soil Health Cards, solar fencing, and solar-powered pumps for better resource management.

Furthermore, scientists visited farmers' fields to assess the use of current technologies, documented farmer innovations, and shared best practices. The campaign successfully achieved its goal of facilitating meaningful farmer-scientist dialogue and listening to the grassroots issues faced by farmers. Interviews and success stories of several farmers were recorded and disseminated widely through newspapers and social media platforms, further promoting the spread of agricultural knowledge across the country.

Researchable issues identified by team (ATARI-UP and IGFRI, Jhansi) under VKSA and Action taken

S.No.	Research issues	Action taken
1	Developing climate resilient and biofortified fodder crops	Novel genes discovery and deployment (Pearl millet, oats, maize, bajra- napier) Tri-species hybrids and improved BN being tested in AICRP. Straw quality analysis of biofortified rice and wheat. Bio-fortification – varietal improvement AICRP - FC
2	Regeneration of degraded and barren lands through grassland development.	Grassland monitoring system Grassland and Grazing policy Drone-based grassland rejuvenation IYRP-2026
3	Improving seed production and chain in fodder crops and grasses.	Breeder seed; NLM support; Participatory seed production Linkages with NDDB, NSC, BAIF Seed producing Bajra Napier hybrid
4	Promotion of region-specific cereal-leguminous fodder system to support balanced and sustainable livestock production.	Technology in place. Extension required State-specific fodder plans
5	Producing year-round fodder on community land for managing goshalas and stray animals.	Technology in place. Extension required State-specific fodder plans.
6.	Development and evaluation of low-cost and conservation techniques.scalable fodder	Technology in place Extension required Silage quality parameters being optimized.Contamination detection kit

(Sadhna Pandey, Gaurendra Gupta, Bishwa Bhasker Choudhary, Samir Barman & Priyanshu Anand)

CELEBRATIONS

Celebration of Republic Day

Republic Day 2025 was celebrated at ICAR-IGFRI, Jhansi and & its Regional Research Stations (Dharwad, Avikanagar, Srinagar, Palampur) on 26th January 2025.

IGFRI Participation in ICAR-West Zone Sports Meet at CICR, Nagpur

The ICAR-West Zone Sports Tournament 2024 was organized at the ICAR-Central Institute for Cotton Research (CICR), Nagpur during February 1–4, 2025. A 54 contingent from ICAR-IGFRI participated in the tournament with great enthusiasm and sportsmanship. The IGFRI team showcased excellent performance and secured top positions in several events.

Gold Medals: Cricket, Badminton, Relay Race, and Discus Throw

Silver Medal: Long Jump

Celebration of World Intellectual Property Day

ICAR-Indian Grassland and Fodder Research Institute Jhansi, celebrated "World Intellectual Property Day–2025", through organized one day workshop on "IP Protection in Agricultural Innovations: Opportunities and Challenges" on 29/04/2025. A total 78 participants including Scientists, technical, administrative and contractual staff (RA/SRF/JRF/YPs etc.) were attended the programme.

The program was inaugurated and chaired by Dr. Pankai Kaushal, Director, ICAR-IGFRI, Jhansi and coordinated by Dr. Vijay K Yadav, Principal Investigator (PI), NAIF Project and Dr. K K Singh, Principal Scientist and Co-Pl, ITMU. Dr Ravi Prakash, Ex-Registrar, PPVFRA, New Delhi was presented as chief guest of the session. Dr. Shiv Datt, Principal Scientist, Intellectual Property and Technology Management (IP&TM) Unit, ICAR New Delhi was the keynote speaker and presented his talk on the topic: IPR in Agriculture: An overview of ICAR Understanding of IPR - Distinct Domains of IPR. Dr. Ravi Prakash, Ex-Registrar, Technical Consultant PPV& FRA New Delhi in his special talk on the topic "PPVFRA 2001: Boon for Researchers and Farmers" briefly described about the new legal provisions that has been implemented by the government, especially PPVFRA for the benefits of the researchers and farmers community.

Innovators/Industry Meet -2025

One-Day Innovators / Industry Meet 2025 under ITMU, ICAR-IGFRI, Jhansi was organized at IGFRI-SRRS, Dharwad, on 25th March 2025. The programme was attended by 50 participants, including representatives from industry, scientists, and officers from the university and state government. Dr. K. Sridhar, Principal Scientist and Officer-in-Charge, IGFRI-SRRS, Dharwad, welcomed the dignitaries and delegates. Prof. Basavaprabhu Jirli, Director, Centre for Multidisciplinary Development Research (CMDR), Dharwad, graced the occasion as the Chief Guest and emphasized the importance of public–private partnerships in bridging the gap

Vol. 30 (1) January-June, 2025 IGFRI Newsletter

between research institutions and end users. Dr. Praveen Malik, CEO, Agrinnovate, New Delhi, joined the event online and highlighted the significance of commercialization of technologies, while also appreciating the efforts of ICAR-IGFRI in licensing forage technologies such as varieties and machinery. Dr. Shiv Datt, Principal Scientist, IPTM Unit, ICAR, New Delhi, addressed the inaugural session on behalf of ADG (IPTM), ICAR, and underlined the role of IPTM and ITMU in the popularization of technologies developed by research institutions.

International Yoga Day

International Yoga Day 2025 was celebrated on 21st June at ICAR-IGFRI, Jhansi, and its Regional Research Stations located at Dharwad, Avikanagar, Srinagar and Palampur. The programme witnessed enthusiastic participation from the staff, highlighting the importance of yoga in promoting health and well-being.

Visits

Hon'ble Cabinet Minister, Ministry of Fisheries, Dairying and Animal Husbandry, Government of India, Shri Rajiv Ranjan Singh alias Lallan Singh visited ICAR-Indian Grassland and Fodder Research Institute, Jhansi on 05.04.2025. He was accompanied by Secretary of the Ministry, Ms Alka Upadhyay and Animal Husbandry Commissioner, Dr. Abhijit Mitra. Dr. Pankaj Kaushal, Director, ICAR-IGFRI highlighted the about the varieties of the fodder crop developed by the Institute, fodder development plans of the different states, pasture development technology and fodder conservation

TRAININGS

A training program entitled 'Fodder seed production, processing and storage' was organized by HRD Cell of ICAR-IGFRI, Jhansi from February 17-21, 2025, sponsored by NDDB and Dairy co-operatives, Anand, Gujrat. A total of 28 officers participated in this training.

New Appointments /Joinings			
S.No.	S.No. Name of Employee & Designation Date		
1	Dr. Nakul Gupta, Sr. Scientist	01.05.2025	
2	Dr. Amit Kumar Singh, Sr. Scientist	02.06.2025	
3	Dr. Asif Mohd. Iqbal, Sr. Scientist	11.06.2025	
4	Dr. Sangeeta Singh, Sr. Scientist	13.06.2025	
5	Dr. Ashok Rai, Sr. Scientist	19.06.2025	
6	Sh. Sushil Kumar, SAO	01.01.2025	
7	Sh. Kiran Singh Meena, Assistant	27.01.2025	
8	Sh. Abhishek Kumar Gupta, T-1	28.02.2025	
9	Sh. Amod Kumar, T-1	28.04.2025	

Departmental Promotion in respect of Scientific, Technical, Administrative and Skilled Supporting Staff during the period 01.01.2024 to 30.06.2024

S.No.	Name of Officer	Nature of Promotion	
1	Dr. Mahendra Prasad, Scientist (Soil Science)	Scientist to Sr. Scientist (Pay Level-12) w.e.f. 01.01.2024	
2	Dr. Amit Kumar Singh, Scientist (Agril. Meteorology)	Scientist to Sr. Scientist (Pay Level-12) w.e.f. 01.07.2024	
3	Sh. Amit Kumar Patil, Scientist (Farm Mach. & Power)	Promotion to Scientist (Pay Level-11) w.e.f. 02.07.2023	
4	Dr. Pooja Tamboli, Scientist (Livestock Production Management)	Promotion to Scientist (Pay Level-11) w.e.f. 07.01.2024	
5	Ms. Bhargavi H.A., Scientist (Genetics & Plant Breeding) (Transferred)	Promotion to Scientist (Pay Level-11) w.e.f. 02.07.2023	
6	Dr. Indu, Scientist Genetics & Plant Breeding) (Transferred)	Promotion to Scientist (Pay Level-11) w.e.f. 30.12.2022	
7	Dr. Subhash Chand, Scientist (Genetics & Plant Breeding)	Promotion to Scientist (Pay Level-11) w.e.f. 07.02.2023	
8	Dr. Bishwa Bhaskar Choudhary, Scientist (Agricultural Economics)	Promotion to Scientist (Pay Level-11) w.e.f. 07.01.2024	
9	Dr. Maneet Rana, Scientist (Agril. Biotechnology)	Scientist to Sr. Scientist (Pay Level-12) w.e.f. 01.07.2024	
10	Dr. Parichita Priyadarshini, Scientist (Agril. Biotechnolgoy)	Promotion to Scientist (Pay Level-11) w.e.f. 29.08.2023	
11	Dr. Surendra Kumar Meena, Scientist (Plant Physiology)	Scientist to Sr. Scientist (Pay Level-12) w.e.f. 01.07.2024	
12	Sh. Surinder Paul, Scientist (Agril. Biotechnology)	Promotion to Scientist (Pay Level-11) w.e.f. 02.07.2023	

Administration

S.No.	Name of Officer/Employee	Nature of promotion Category	
1.	Sh. Rakesh Kumar Chhipa	Assistant to AAO w.e.f. 01.02.2025	
2.	Sh. Prashant Saxena	LDC to UDC w.e.f. 27.06.2025	

Retired

S.No.	Name of Employee & Designation	Date
1	Dr. Sudesh Radotra, Pr. Scientist & OIC RRS Palampur	31.01.2025
2	Dr. J.B. Singh, Pr. Scientist (Agril. Meteorology)	31.03.2025
3	Dr. J.P. Singh, Pr. Scientist (Geography)	31.03.2025
4	Sh. Bhagwat Narayan Kushwaha, T-1	31.05.2025
5	Sh. Mathura Singh, T-2	30.06.2025
6	Sh. Shripat, MTS	31.01.2025
7	Sh. Shriprakash, MTS	31.01.2025
8	Sh. Gulab Singh, MTS	31.05.2025
9	Sh. Ratiram, MTS	31.05.2025
10	Sh. NingappaV.Bailur, MTS	31.05.2025

Transferred

S.No.	Name of Employee & Designation	Date
1	Dr. Maharishi Tomar, Scientist (Agril. Biochemistry) transferred to ICAR- CIPHET, Ludhiana	28.04.2025

Vol. 30 (1) January-June, 2025 IGFRI Newsletter

S.N.	Crop	Variety	Seed/Planting	Quantity	Price (Rs.)
			material	available	20/
1.	Oat	JHO-822	Seed	500 kg	60/- per kg
2.	Oat	Kent	Seed	735 kg	60/- per kg
3.	Oat	JHO-851	Seed	460 kg	60/- per kg
4.	Oat	JHO-2000-4	Seed	140 kg	60/- per kg
5.	Oat	JHO-2009-1	Seed	315 kg	60/- per kg
6.	Oat	JHO-2015-1	Seed	30 kg	60/- per kg
7.	Berseem	JBSC-1	Seed	160 kg	220/- per kg
8.	Berseem	Wardan	Seed	30 kg	220/- per kg
9.	Dinanath grass (Naked seed)	BD-2	Seed	8 kg	7000/- per kg
10.	Dinanath grass	BD-2	Seed	30 kg	500/- per kg
11.	Stylo	Non-specific	Seed	5 kg	500/- per kg
12.	Sehima (Saen grass)	Bundel Saen Ghas-1	Seed	1.5 kg	700/- per kg
13.	Bothriochloa (Phoolkara ghas)	Non-specific	Seed	2.0 kg	800/- per kg
14.	Desmanthus (Dashrath ghas)	Non-specific	Seed	3.0 kg	600/- per kg
15.	Moringa	Non-specific	Seed	10.0 kg	1500/- per kg
16.	Moringa local	Non-specific	Seed	7.0 kg	1500/- per kg
17.	Subabool	K-636	Seed	25 kg	360/- per kg
18.	Subabool	S-24	Seed	109 kg	360/- per kg
19.	Subabool	S-10	Seed	25 kg	360/- per kg
20.	Subabool	S-22	Seed	60 kg	360/- per kg
21.	Subabool	K-08	Seed	40 kg	360/- per kg
22.	B.N. Hybrid	BN IGFRI-3	Rooted slips	4.0 Lakh	3/- per slip
23.	Guinea grass	BG-2	Rooted slips	2.0 Lakh	3/- per slip
24.	Guinea grass	BG-4	Rooted slips	2.0 Lakh	3/- per slip
25.	Anjan grass	Non-specific	Rooted slips	1.0 Lakh	3/- per slip
26.	Dhaman grass	Non-specific	Rooted slips	1.0 Lakh	3/- per slip

Published by :

Director

ICAR-Indian Grassland and Fodder Research Institute Jhansi-284 003, India

Telephone: 0510-2730666 Fax: 05102730833

 $\hbox{E-mail: director.igfri@icar.org.in; igfri.director@gmail.com}\\$ Published at: http://www.igfri.res.in, www.icar.gov.in

Swachh Bharat Abhiyan

For seed/planting material enquiries, Contact: 7651831820, E-mail: headst.igfri@gmail.com

Editorial Committee: Tejveer Singh Mukesh Choudhary R.K. Singhal R.P. Saini Avijit Ghosh Shailendra Sinha K.P. Rao Pawan Kumar